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ABOUT FLOATFARM  

The FLOATFARM project is a Research and Innovation Action funded by the 

European Union under the Horizon Europe program. This project is closely linked 

to the FLOATECH project (2020-2023) and aims to bring the technologies developed 

within FLOATECH to the next level of technological readiness, complementing them 

with a significant number of new concepts, innovations and methods. 

FLOATFARM aims to significantly advance the maturity and competitiveness of 

floating offshore wind (FOW) technology by increasing energy production, 

achieving significant cost reductions within the design and implementation phases, 

improving offshore wind value chain and supporting EU companies in this growing 

sector. Additionally, FLOATFARM aims to decrease negative environmental impacts 

on marine life and to enhance the public acceptability of FOW, thereby accelerating 

the EU energy transition.  

The FLOATFARM 

consortium is 

coordinated by the 

Technische 

Universität Berlin and 

is made up of 17 

partners spread 

across 8 countries, 

each contributing to 

technology and 

scientific excellence 

in the wind energy 

sector.  

 

The approach of FLOATFARM can be broken down into three actions: 

1) Turbine Technology: Development of innovative technologies and methods 

for improvements on an individual FOW turbine level, 

 

2) Farm Technology: Development, investigation and demonstration of 

technologies that are applicable to an array of turbines within a FOW farm, 

3) Environmental & Socioeconomic Impacts: Model development, data collection and 

scenario analysis of environmental, economic and sociological impacts of FOW farms. 

  

https://cordis.europa.eu/project/id/101007142
https://www.floatech-project.com/expected-results
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1. Introduction 

1.1. Context within FLOATFARM 

This document presents the interface between the aero-hydro-servo-elastic simulation tool 

QBlade and the holistic optimization framework called WEIS (Wind Energy integrated 

Servo-Controls), henceforth called QBtoWEIS, that was developed in Task 7.1 of WP7 of 

FLOATFARM. This integration provides the basis for several optimization and design tasks 

within Work Packages (WPs) 1-6 and is therefore essential for successful achievement of 

FLOATFARM objectives.  

This document should be read as a guide to the public release of QBtoWEIS, which is the 

actual deliverable. 

1.2. Document Structure 

The document is divided into three sections. First, the motivation for QBtoWEIS and its 

capabilities are discussed. Second, a guide to installing and running the model is provided. 

Lastly, results of two test case optimization problems are demonstrated. 

 

2. QBtoWEIS  

2.1. Overview and Motivation 

Floating Offshore Wind Turbines (FOWTs) are inherently interdisciplinary systems that are 

excited by a multitude of non-linear external inputs. Figure 1 provides and overview of the 

main sub-systems that comprise a FOWT and the environment in which they operate. 

Turbines currently analyzed within the science community possess rotor diameters 

exceeding 250m and have a rated power of 20 or more megawatt. These large structures 

experience vastly different aerodynamic conditions depending on the azimuthal position of 

the blade. At the same time, floating structures are exposed to linear and non-linear wave 

excitation that potentially cause resonance. The aerodynamic and wave forces cause the 

floating substructure to move within its rigid degrees of freedom (DOFs), most prominently 

in surging and pitching motions, causing the turbine to be exposed to negative 

aerodynamic damping and, at times, interact with its own wake. Due to the rotational 

speed of the rotor, gyroscopic effects play an increasing role when the turbine undergoes 

a pitching motion. The continuous motion of the turbine adds to the load requirements that 

are posed to a FOWT, compared to their fixed-bottom or onshore counterparts (e.g. on the 

intersection between floating sub-structure and the tower). To keep the system stable, to 



maximize annual energy production (AEP), to react to grid events or to secure the system 

during extreme weather events, a controller manipulates rotational speed and blade pitch 

during operation. 

 

 

This complex interaction of sub-systems poses a challenge to designers of each sub-

component as any design decision taken might have an unintended consequence on overall 

system behavior in such dynamic and tightly coupled system. 

To cope with this challenge, the design approach of FOWT might have to evolve from a 

sequential one to a Control Co-Design (CCD) approach. In a sequential approach the 

mechanical (sub-)system is typically designed initially and the controller design begins 

once the mechanical system is considered to be in a finished iteration. Within the design 

of the mechanical sub-systems, each group has to design their component so that pre-

defined constraints and objectives are met. By nature, these constraints and objectives 

have to be conservative to prevent a highly iterative process that can cost time [1]. 

CCD offers the potential to design the mechanical floating offshore wind energy system at 

the same time as the controller and thus finding solutions that could not found in a 

sequential approach [3]. 

2.2. WEIS 

The Wind Energy and Integrated Servo-Controls toolset is a framework developed at the 

National Renewable Energy Lab (NREL) to design and optimize floating offshore wind 

turbine structures. 

WEIS consists of many mostly NREL developed open-source tools that are connected in 

WEIS using the NASA developed open-source python library OpenMDAO [4]. Figure 2 

Figure 1 – Sub-systems of a FOWT and environmental excitation. Figure taken 

from [1]. 



shows the tools that make up WEIS and demonstrates the direction of the workflow in a 

typical optimization or design task. 

 
Figure 2 – Components that are integrated in WEIS, taken from [5]. 

In the present document, the toolchain is briefly described. For a detailed description of 

the individual tools and the work flow, the reader is referred to publication [5]. 

WindIO: Parametric definition of mostly inputs and outputs of a FOWT design [6].  

WISDEM: Wind-plant Integrated System Design and Engineering Model (WISDEM) is an 

optimization framework in its own right. WISDEM relies on steady state tools and includes 

techno-economic modules to derive masses, costs and structural beam properties. Within 

WEIS, WISDEM is utilized mostly to evaluate costs and convert the WindIO definition into 

a OpenFAST/RAFT/QBlade model. 

ROSCO: Reference OpenSource Controller (ROSCO) is an open-source reference controller 

that comes with the ROSCO toolbox. The toolbox allows for a generic process to enable 

CCD. 

pyHAMS: python wrapper for Hydrodynamic Analysis of Marine Structures (HAMS) [8], 

which is an open-source software to analyze wave-structure interaction in the frequency 

domain. Added mass, damping coefficients and excitation forces are evaluated for 3D 

structures in order to include radiation and diffraction effects in time domain simulations. 

OpenFAST: Nonlinear aero-servo-hydro-elastic simulation framework for wind turbine 

response in time domain. The typical simulation duration is in the magnitude of minutes. 

RAFT: Response Amplitudes of Floating Turbines (RAFT) is a linear, frequency domain 

representation of a FOWT [10]. The typical simulation duration is in the magnitude of 

seconds. 



pCrunch: IO and post processing interface for OpenFAST results [11]. Used within WEIS 

to analyze load case results and derive parameters usually used as constraints or merit 

figures (such as damage equivalent loads (DELs), AEP, etc.) 

2.3. QBlade in the WEIS framework 

The objective of the coupling that is described in this document is to expand the stack of 

tools that WEIS combines by the simulation framework QBlade and thus provide a design 

engineer with another option next to OpenFAST and RAFT to carry out aero-servo-hydro-

elastic simulations. 

QBlade [12] is an aero-servo-hydro-elastic simulation framework with similar capabilities 

as OpenFAST. During the Horizon2020 project FLOATECH (https://www.floatech-

project.com/), QBlade was expanded by a hydrodynamic module called QBlade-Ocean [13] 

and subsequently validated in [14]. Accordingly, wind turbine response in time domain can 

be analyzed leveraging the various fidelity levels with regards to wake aerodynamics and 

structural modeling that QBlade offers. 

In particular, QBlade includes a Lifting-Line Free Vortex Wake method (LLFVW) which 

increases the fidelity level of wake aerodynamics compared to the conventional Blade 

Element Momentum (BEM) method. The LLFVW method is highly optimized for work station 

use and thus may enable optimization of selected load cases with this higher fidelity 

method. Previous studies ([15,16]) have assessed that the LLFVW method estimates lower 

DELs compared to the BEM method. Including this method may therefore lead to more 

slender designs, ultimately reducing the material costs.  

Furthermore, QBlade’s coupling to the multi-physics engine Chrono [17] adds a fully non-

linear structural model to WEIS with the option to use Euler-Bernoulli, Timoshenko or 

Timoshenko-FPM (fully populated matrix) beam elements. Especially the latter beam option 

represents a crucial increase of fidelity to capture coupled dynamics in the structural model 

(such as blade-twist coupling). The choice of the beam model has hardly an influence on 

computational speed making it feasible to include the FPM model in optimization problems. 

In order to enable a designer to access QBlade from within WEIS, an OpenMDAO 

component has been created for QBlade and all required inputs from WISDEM, pyHAMS, 

ROSCO, etc. have been mapped to QBlade specific inputs. This enables a user to derive an 

accurate QBlade model from the windIO definition. Subsequently, QBlade simulations for 

user defined design load cases (DLCs) are generated and called from a QBlade wrapper 

within WEIS. Once the simulation terminates, relevant time series are written out and 

mapped to channels that can be interpreted by the post-processing tool pCrunch. pCrunch 

https://www.floatech-project.com/
https://www.floatech-project.com/


derives parameters such as AEP, DELs, max platform pitch angle, etc. These are utilized 

by the optimizer as constraints, design variables or merit figures.  

3. Access, Installation and Basic User Guide 

3.1. Access 

QBtoWEIS is released as a fork to the WEIS repository maintained by NREL. This was 

chosen as this allows to maintain the repository efficiently when other developers submit 

updates to the main WEIS repository. Furthermore, it provides high visibility to the 

repository.  

The fork can be accessed at this public link: 

https://github.com/rbehrensdeluna/QBtoWEIS.git 

3.2. Installation  

QBtoWEIS has been developed and tested on Windows Subsystem for Linux (WSL2). While 

cross-platform compatibility has been considered throughout development, installation on 

a Windows platform is not recommended at this point. This is one area of focus to develop 

the code further after the initial release in December 2024. 

The installation process is in line with the one of the core WEIS code. The following 

commands have been tested on various machines starting with a baseline WSL distribution 

and Ubuntu-22.04. Installation with Anaconda 64-bit (https://www.anaconda.com/) in a 

newly created self-contained environment is recommended.  

Figure 3 – QBlade in the WEIS Framework, taken from [5] and modified. 

https://github.com/rbehrensdeluna/QBtoWEIS.git
https://www.anaconda.com/


1. Clone the repository and create a virtual environment install the software: 

conda config --add channels conda-forge 
git clone https://github.com/rbehrensdeluna/QBtoWEIS.git 
cd QBtoWEIS 
 

2. Create a virtual environment and install the software: 

conda env create --name qbweis-env -f environment.yml 
conda activate qbweis-env 
conda install -y petsc4py mpi4py  
pip install --no-deps -e . -v 
conda install -c conda-forge pyoptsparse 
 

3. Download and configure QBladeCE executables under WSL2: 

Download QBladeCE from https://qblade.org/downloads/ and place it in the WSL2 

directory. Then install some libraries that are required to run QBlade: 

sudo apt-get update -y 
sudo apt-get install -y libqt5opengl5 libqt5xml5 libquadmath0 libglu1-
mesa 

 

Then, make QBladeCE executable: 

 
chmod +x run_qblade.sh 
chmod +x QBladeCE_x.y.z # x.y.z should be replaced by the actual version 
number, e.g. 2.0.7.8  
NOTE: QBtoWEIS requires QBladeCE/QBladeEE version 2.0.7.8 or newer to enable for multi-processing capabilities (number_of_workers > 1) 

 

 

Congratulations, you now have installed QBtoWEIS on your local machine! 

 

To test if everything is working, navigate to the “qb_examples” folder and run the 
example 

 
cd qb_examples 
python weis_driver_oc3.py 

 

This test case simply runs the NREL5MW wind turbine on the oc3 floating sub structure at 

rated conditions without starting an optimization.  

Note: To make sure that the QBlade wrapper can access the shared object and set the 

environment to run QBlade, please enter the paths to where QBlade is located on your 

system in the modeling_options.yaml file of the provided example: 

General: 

    qblade_configuration: 

        flag: True 

        path2qb_libs: <abs_path_to_QBlade_Libraries>  

        # should end like: <…>/QBladeCE_2.0.7.8/Libraries 
        path2qb_dll: <abs_path_to_QBlade_shared_object> should end like  

        # should end like: <…>/QBladeCE_2.0.7.8/libQBladeCE_2.0.7.8.so.1.0.0    
 

https://qblade.org/downloads/


3.3. User Guide 

When a user plans to use QBlade in an optimization problem or design task within WEIS, 

the workflow follows the same logic as if a level 1 (RAFT) or level 2 or 3 (OpenFAST) 

optimization with WEIS was to be run. 

In particular, WEIS is accessed by a user through three *.yaml type files and one driver 

python script that calls each of the yaml files and runs WEIS. In the following a short 

overview is provided 

windIO.yaml:  

This file contains the parametric definition of a FOWT including information such as, airfoils, 

blade geometry, internal blade layup, floater geometry, materials, wall thicknesses, etc. 

There are several wind turbine geometries available to the research community: 

• NREL5MW-Spar OC3 & -Semi OC4 

• IEA 3.4-130 RWT 

• IEA-15MW-250-RWT Monopile & VolturnUS-S 

• IEA-22MW-280-RWT Monopile & VolturnUS-S 

modeling_options.yaml: 

The modeling options file lets the user define code specific simulation settings. Here, the 

user may select between the different aero-servo-hydro-elastic modeling tools (OpenFAST, 

RAFT, QBlade), and enter inputs relevant to, e.g. wake modeling, time step size, if a 

controller is included, the load case, etc. This file allows for an exhaustive list of entries as 

almost any QBlade parameter may be set. To keep the mapping intuitive, most entries are 

set using the QBlade keywords that match the text-based format of QBlade turbine and 

simulation (*.bld/*.sim/*.trb), see [18] for more information on the text-based QBlade 

format. 

A detailed overview of available inputs, detailed descriptions, entry-types and bounds can 

be found in the modeling_schema.yaml (QBtoWEIS/weis/inputs/modeling_schema.yaml). 

Here, all QBlade relevant inputs are found in in the “Level4” object and 

“qblade_configuration” which is nested in the properties object. 

analysis_options.yaml: 

The analysis options file determines in which context simulations are run. Either, chosen 

load cases are simply run for analysis purposes, an optimization problem is set up or a 

design of experiments built. In case any of the latter two options is chosen, design 

variables, constraints and, if required, a merit figure can be chosen. Furthermore, settings 

concerning the optimization algorithm such as maximum iterations or convergence criteria 

can be defined. 



weis_driver.py: 

Not necessarily required, this python script points to the three abovementioned files and 

invokes the “run_weis()” method and passes the three files as arguments to the function. 

4. Demonstration Test Cases 

The test cases presented below are intended to demonstrate the functional coupling 

between QBlade and WEIS and to show that the optimizer finds solutions to problems that 

are easy to interpret and may seem trivial for validation purposes. 

4.1. IEA15MW-Monopile 

In this example, a fixed bottom offshore wind turbine is supposed to be optimized with the 

objective to reduce the Damage Equivalent Loads acting on the tower base connection 

between monopile and tower. 

We simulate steady conditions at wind speeds of {4, 6, 8, 10, 12, 15, 20}[m/s]. The 

simulations include the ROSCO controller. Thus, the optimization problem is formulated 

as: 

 

 

 

Since there are no constraints on structure mass nor cost, one would expect the optimizer 

to increase the wall thicknesses and diameters of tower and monopile in order to minimize 

stress in the system and thus reduce the tower base DEL. 

Minimize:  

twr base del  

By Varying: 

 tower diameter 

 tower wall thickness 

 monopile diameter 

 monopile wall thickness 

Subject to: 

 stress constraint 

 global buckling 

 shell buckling 

 diam. to thick. ratio 

 taper 

 frequency 

 … 

Figure 4 – IEA15MW turbine, rendered in 

the QBlade GUI 



 

 

Figure 5 shows the progression of the optimization. In all sub-figures except for DEL 

TwrBsMyt, the various control points are displayed over the normalized length of the tower 

or monopile. To visualize the progression of the optimization, a color-code is added, where 

gray represents the baseline configuration and orange the final configuration. 

As was expected, the tower diameter was increased within the bounds (upper bound 10m), 

while still complying with a taper constraint. The monopile diameter is maintained at 10m 

which presents an upper bound as well. For both the tower and the monopile, the wall 

thicknesses are increased considerably, leading to a reduction of the stress constraint1. 

The influence of the chosen design variables on the fore-aft tower base DEL is evident in 

the iteration tracker of the chosen merit figure DEL TwrBsMyt. 

4.2. IEA22MW UMaine VolturnUS-S 

The second test case focuses on the IEA22MW wind turbine mounted on the semi-

submersible VolturnUS-S substructure with catenary mooring lines. This time, the objective is 

the reduction of the structural mass of the substructure, a common optimization merit figure 

to reduce material use and save cost. 

                                           

1 The stress constraint is defined as the maximum allowable von Mises stress relative to 

the material yield stress 

Figure 5  - Optimization progression to reduce the tower base fore-aft DEL of on 

the IEA15MW wind turbine on a monopile platform. Shown are the control 

points accessible to the optimizer over the normed length of the tower or 

monopile as well as the merit figure per iteration. 



With 11.5m/s wind speed, rated wind conditions (two turbulent seeds) with still water are 

considered and the ROSCO controller is utilized. The optimization problem is formulated 

accordingly: 

 

In order to reduce platform mass, it seems obvious that the optimizer would attempt to 

reduce the dimensions of the platform.  

Analyzing the iteration tracker of the optimization in Fig. 7 one can see that platform draft is 

immediately reduced to the upper bound of -22m while the column spacing and diameter is 

initially reduced as well. As one would expect, this measure reduces platform mass greatly. 

Minimize:  

platform mass  

By Varying: 

 platform draft 

 column spacing 

 column diameter 

 pc natural frequency 

 pc damping ratio 

 ... 

Subject to: 

 pitch natural frequency 

 heave natural frequency 

 max. platform pitch 

Figure 6– IEA22MM on UMaine 

VolturnUS-S platform, rendered in 

the QBlade GUI 

Figure 7 – Optimization progression to reduce the platform mass of the UMaine 

VolturnUS-S for a IEA22MW wind turbine. Shown are platform draft defined as 

the distance from sea level, the column spacing as the radial distance from the 

tower position to the outer columns as well as their column diameter. The 

second row shows the pitch control natural frequency design variable, the 

maximum floater pitching constraint and the merit figure, platform mass.  

 



However, platform stability is strongly decreased as the maximum pitch angle during 

operation reaches values well above the set constraint of 5 degrees. To comply with this 

constraint, the optimizer gradually increases column spacing and diameter. Finally, the max 

pitch constraint is reached with a considerable improvement in platform mass with regards to 

the initial configuration. In parallel, the pitch control natural frequency and damping ratio (not 

shown here for brevity) are tuned, demonstrating a functional CCD example with the 

QBtoWEIS coupling. 

5. Conclusion 

In this deliverable, an overview of the work carried out in Task 7.1 within WP 7 of the 

FLOATFARM project is given. Thereby, an integration of the aero-servo-hydro-elastic wind 

turbine simulation tool QBlade into the design and optimization framework WEIS is 

introduced. 

The motivation for such a tool lies in the multi-disciplinary complex problem that is posed to 

designers and engineers involved in the optimization and design process of FOWTs. WEIS 

already provides a holistic toolset to carry out multi-disciplinary design analysis and 

optimization tasks. This toolset is expanded by QBlade, adding various options and capabilities 

to the framework that include wake modeling and structural dynamics. 

Two test cases were presented for the optimizer where the optimization problems were 

formulated in such a way that a certain result could be expected based on the given design 

space, constraints and merit figure. QBtoWEIS performed as expected, reducing the DEL on a 

fixed-bottom monopile offshore wind turbine and the structural mass of the floating 

substructure on a semi-submersible platform.  
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