

DELIVERABLE D7.1

QBlade Interfacing

Framework

Robert Behrens de Luna (Technische Universität Berlin)

Ref. Ares(2024)9053239 - 17/12/2024

Document track information

Project information

Project Title

Developing the Next Generation of Environmentally-

Friendly Floating Wind Farms with Innovative

Technologies and Sustainable Solutions

Starting date 01.01.2024

Duration 48 months

Programme HORIZON EUROPE

Call Identifier HORIZON-CL5-2023-D3-01

Grant Agreement No 101136091

Deliverable information

Deliverable number 7.1

Work package number 7

Deliverable Title QBlade Interfacing Framework

Lead beneficiary Technische Universität Berlin

Author Robert Behrens de Luna

Due date 31.12.2024

Actual submission date 17.12.2024

Type of deliverable Other

Dissemination Level Public

Views and opinions expressed are however those of the author(s) only

and do not necessarily reflect those of the European Union or the

European Innovation Council and SMEs Executive Agency (EISMEA). Neither the European Union nor

EISMEA can be held responsible for them.

Revision table

Version Contributors Date Description

V0.1 Behrens de Luna, TUB 11/12/2024 First draft

V1.0
Claudio Lugni, CNR

Behrens de Luna, TUB

17/12/2024

17/12/2024

Revision

Final edits

List of acronyms

Acronym Full name

AEP Annual Energy Production

BEM Blade Element Momentum

DEL Damage Equivalent Load

DLC Design Load Case

DOF Degree Of Freedom

FPM Fully Populated Matrix

FOWT Floating Offshore Wind Turbine

HAMS Hydrodynamic Analysis of Marine Structures

LLFVW Lifting-Line Free Vortex Wake

NREL National Renewable Energy Laboratory

Pc Pitch control

WEIS Wind Energy and Integrated Servo-Controls

WISDEM
Wind-plant Integrated System Design and Engineering

Model

WP Work Package

WSL2 Windows Subsystem for Linux 2

ROSCO Reference OpenSource Controller

ABOUT FLOATFARM

The FLOATFARM project is a Research and Innovation Action funded by the

European Union under the Horizon Europe program. This project is closely linked

to the FLOATECH project (2020-2023) and aims to bring the technologies developed

within FLOATECH to the next level of technological readiness, complementing them

with a significant number of new concepts, innovations and methods.

FLOATFARM aims to significantly advance the maturity and competitiveness of

floating offshore wind (FOW) technology by increasing energy production,

achieving significant cost reductions within the design and implementation phases,

improving offshore wind value chain and supporting EU companies in this growing

sector. Additionally, FLOATFARM aims to decrease negative environmental impacts

on marine life and to enhance the public acceptability of FOW, thereby accelerating

the EU energy transition.

The FLOATFARM

consortium is

coordinated by the

Technische

Universität Berlin and

is made up of 17

partners spread

across 8 countries,

each contributing to

technology and

scientific excellence

in the wind energy

sector.

The approach of FLOATFARM can be broken down into three actions:

1) Turbine Technology: Development of innovative technologies and methods

for improvements on an individual FOW turbine level,

2) Farm Technology: Development, investigation and demonstration of

technologies that are applicable to an array of turbines within a FOW farm,

3) Environmental & Socioeconomic Impacts: Model development, data collection and

scenario analysis of environmental, economic and sociological impacts of FOW farms.

https://cordis.europa.eu/project/id/101007142
https://www.floatech-project.com/expected-results

Table of contents

ABOUT FLOATFARM ... 4

1. Introduction ... 6

1.1. Context within FLOATFARM ... 6

1.2. Document Structure ... 6

2. QBtoWEIS .. 6

2.1. Overview and Motivation .. 6

2.2. WEIS ... 7

2.3. QBlade in the WEIS framework .. 9

3. Access, Installation and Basic User Guide ... 10

3.1. Access .. 10

3.2. Installation ... 10

3.3. User Guide .. 12

4. Demonstration Test Cases & Validation .. 13

4.1. IEA15MW-Monopile .. 13

4.2. IEA22MW UMaine VolturnUS-S .. 14

5. Conclusion.. 16

6. Literature ... 17

1. Introduction

1.1. Context within FLOATFARM

This document presents the interface between the aero-hydro-servo-elastic simulation tool

QBlade and the holistic optimization framework called WEIS (Wind Energy integrated

Servo-Controls), henceforth called QBtoWEIS, that was developed in Task 7.1 of WP7 of

FLOATFARM. This integration provides the basis for several optimization and design tasks

within Work Packages (WPs) 1-6 and is therefore essential for successful achievement of

FLOATFARM objectives.

This document should be read as a guide to the public release of QBtoWEIS, which is the

actual deliverable.

1.2. Document Structure

The document is divided into three sections. First, the motivation for QBtoWEIS and its

capabilities are discussed. Second, a guide to installing and running the model is provided.

Lastly, results of two test case optimization problems are demonstrated.

2. QBtoWEIS

2.1. Overview and Motivation

Floating Offshore Wind Turbines (FOWTs) are inherently interdisciplinary systems that are

excited by a multitude of non-linear external inputs. Figure 1 provides and overview of the

main sub-systems that comprise a FOWT and the environment in which they operate.

Turbines currently analyzed within the science community possess rotor diameters

exceeding 250m and have a rated power of 20 or more megawatt. These large structures

experience vastly different aerodynamic conditions depending on the azimuthal position of

the blade. At the same time, floating structures are exposed to linear and non-linear wave

excitation that potentially cause resonance. The aerodynamic and wave forces cause the

floating substructure to move within its rigid degrees of freedom (DOFs), most prominently

in surging and pitching motions, causing the turbine to be exposed to negative

aerodynamic damping and, at times, interact with its own wake. Due to the rotational

speed of the rotor, gyroscopic effects play an increasing role when the turbine undergoes

a pitching motion. The continuous motion of the turbine adds to the load requirements that

are posed to a FOWT, compared to their fixed-bottom or onshore counterparts (e.g. on the

intersection between floating sub-structure and the tower). To keep the system stable, to

maximize annual energy production (AEP), to react to grid events or to secure the system

during extreme weather events, a controller manipulates rotational speed and blade pitch

during operation.

This complex interaction of sub-systems poses a challenge to designers of each sub-

component as any design decision taken might have an unintended consequence on overall

system behavior in such dynamic and tightly coupled system.

To cope with this challenge, the design approach of FOWT might have to evolve from a

sequential one to a Control Co-Design (CCD) approach. In a sequential approach the

mechanical (sub-)system is typically designed initially and the controller design begins

once the mechanical system is considered to be in a finished iteration. Within the design

of the mechanical sub-systems, each group has to design their component so that pre-

defined constraints and objectives are met. By nature, these constraints and objectives

have to be conservative to prevent a highly iterative process that can cost time [1].

CCD offers the potential to design the mechanical floating offshore wind energy system at

the same time as the controller and thus finding solutions that could not found in a

sequential approach [3].

2.2. WEIS

The Wind Energy and Integrated Servo-Controls toolset is a framework developed at the

National Renewable Energy Lab (NREL) to design and optimize floating offshore wind

turbine structures.

WEIS consists of many mostly NREL developed open-source tools that are connected in

WEIS using the NASA developed open-source python library OpenMDAO [4]. Figure 2

Figure 1 – Sub-systems of a FOWT and environmental excitation. Figure taken

from [1].

shows the tools that make up WEIS and demonstrates the direction of the workflow in a

typical optimization or design task.

Figure 2 – Components that are integrated in WEIS, taken from [5].

In the present document, the toolchain is briefly described. For a detailed description of

the individual tools and the work flow, the reader is referred to publication [5].

WindIO: Parametric definition of mostly inputs and outputs of a FOWT design [6].

WISDEM: Wind-plant Integrated System Design and Engineering Model (WISDEM) is an

optimization framework in its own right. WISDEM relies on steady state tools and includes

techno-economic modules to derive masses, costs and structural beam properties. Within

WEIS, WISDEM is utilized mostly to evaluate costs and convert the WindIO definition into

a OpenFAST/RAFT/QBlade model.

ROSCO: Reference OpenSource Controller (ROSCO) is an open-source reference controller

that comes with the ROSCO toolbox. The toolbox allows for a generic process to enable

CCD.

pyHAMS: python wrapper for Hydrodynamic Analysis of Marine Structures (HAMS) [8],

which is an open-source software to analyze wave-structure interaction in the frequency

domain. Added mass, damping coefficients and excitation forces are evaluated for 3D

structures in order to include radiation and diffraction effects in time domain simulations.

OpenFAST: Nonlinear aero-servo-hydro-elastic simulation framework for wind turbine

response in time domain. The typical simulation duration is in the magnitude of minutes.

RAFT: Response Amplitudes of Floating Turbines (RAFT) is a linear, frequency domain

representation of a FOWT [10]. The typical simulation duration is in the magnitude of

seconds.

pCrunch: IO and post processing interface for OpenFAST results [11]. Used within WEIS

to analyze load case results and derive parameters usually used as constraints or merit

figures (such as damage equivalent loads (DELs), AEP, etc.)

2.3. QBlade in the WEIS framework

The objective of the coupling that is described in this document is to expand the stack of

tools that WEIS combines by the simulation framework QBlade and thus provide a design

engineer with another option next to OpenFAST and RAFT to carry out aero-servo-hydro-

elastic simulations.

QBlade [12] is an aero-servo-hydro-elastic simulation framework with similar capabilities

as OpenFAST. During the Horizon2020 project FLOATECH (https://www.floatech-

project.com/), QBlade was expanded by a hydrodynamic module called QBlade-Ocean [13]

and subsequently validated in [14]. Accordingly, wind turbine response in time domain can

be analyzed leveraging the various fidelity levels with regards to wake aerodynamics and

structural modeling that QBlade offers.

In particular, QBlade includes a Lifting-Line Free Vortex Wake method (LLFVW) which

increases the fidelity level of wake aerodynamics compared to the conventional Blade

Element Momentum (BEM) method. The LLFVW method is highly optimized for work station

use and thus may enable optimization of selected load cases with this higher fidelity

method. Previous studies ([15,16]) have assessed that the LLFVW method estimates lower

DELs compared to the BEM method. Including this method may therefore lead to more

slender designs, ultimately reducing the material costs.

Furthermore, QBlade’s coupling to the multi-physics engine Chrono [17] adds a fully non-

linear structural model to WEIS with the option to use Euler-Bernoulli, Timoshenko or

Timoshenko-FPM (fully populated matrix) beam elements. Especially the latter beam option

represents a crucial increase of fidelity to capture coupled dynamics in the structural model

(such as blade-twist coupling). The choice of the beam model has hardly an influence on

computational speed making it feasible to include the FPM model in optimization problems.

In order to enable a designer to access QBlade from within WEIS, an OpenMDAO

component has been created for QBlade and all required inputs from WISDEM, pyHAMS,

ROSCO, etc. have been mapped to QBlade specific inputs. This enables a user to derive an

accurate QBlade model from the windIO definition. Subsequently, QBlade simulations for

user defined design load cases (DLCs) are generated and called from a QBlade wrapper

within WEIS. Once the simulation terminates, relevant time series are written out and

mapped to channels that can be interpreted by the post-processing tool pCrunch. pCrunch

https://www.floatech-project.com/
https://www.floatech-project.com/

derives parameters such as AEP, DELs, max platform pitch angle, etc. These are utilized

by the optimizer as constraints, design variables or merit figures.

3. Access, Installation and Basic User Guide

3.1. Access

QBtoWEIS is released as a fork to the WEIS repository maintained by NREL. This was

chosen as this allows to maintain the repository efficiently when other developers submit

updates to the main WEIS repository. Furthermore, it provides high visibility to the

repository.

The fork can be accessed at this public link:

https://github.com/rbehrensdeluna/QBtoWEIS.git

3.2. Installation

QBtoWEIS has been developed and tested on Windows Subsystem for Linux (WSL2). While

cross-platform compatibility has been considered throughout development, installation on

a Windows platform is not recommended at this point. This is one area of focus to develop

the code further after the initial release in December 2024.

The installation process is in line with the one of the core WEIS code. The following

commands have been tested on various machines starting with a baseline WSL distribution

and Ubuntu-22.04. Installation with Anaconda 64-bit (https://www.anaconda.com/) in a

newly created self-contained environment is recommended.

Figure 3 – QBlade in the WEIS Framework, taken from [5] and modified.

https://github.com/rbehrensdeluna/QBtoWEIS.git
https://www.anaconda.com/

1. Clone the repository and create a virtual environment install the software:

conda config --add channels conda-forge
git clone https://github.com/rbehrensdeluna/QBtoWEIS.git
cd QBtoWEIS

2. Create a virtual environment and install the software:

conda env create --name qbweis-env -f environment.yml
conda activate qbweis-env
conda install -y petsc4py mpi4py
pip install --no-deps -e . -v
conda install -c conda-forge pyoptsparse

3. Download and configure QBladeCE executables under WSL2:

Download QBladeCE from https://qblade.org/downloads/ and place it in the WSL2

directory. Then install some libraries that are required to run QBlade:

sudo apt-get update -y
sudo apt-get install -y libqt5opengl5 libqt5xml5 libquadmath0 libglu1-
mesa

Then, make QBladeCE executable:

chmod +x run_qblade.sh
chmod +x QBladeCE_x.y.z # x.y.z should be replaced by the actual version
number, e.g. 2.0.7.8
NOTE: QBtoWEIS requires QBladeCE/QBladeEE version 2.0.7.8 or newer to enable for multi-processing capabilities (number_of_workers > 1)

Congratulations, you now have installed QBtoWEIS on your local machine!

To test if everything is working, navigate to the “qb_examples” folder and run the
example

cd qb_examples
python weis_driver_oc3.py

This test case simply runs the NREL5MW wind turbine on the oc3 floating sub structure at

rated conditions without starting an optimization.

Note: To make sure that the QBlade wrapper can access the shared object and set the

environment to run QBlade, please enter the paths to where QBlade is located on your

system in the modeling_options.yaml file of the provided example:

General:

 qblade_configuration:

 flag: True

 path2qb_libs: <abs_path_to_QBlade_Libraries>

 # should end like: <…>/QBladeCE_2.0.7.8/Libraries
 path2qb_dll: <abs_path_to_QBlade_shared_object> should end like

 # should end like: <…>/QBladeCE_2.0.7.8/libQBladeCE_2.0.7.8.so.1.0.0

https://qblade.org/downloads/

3.3. User Guide

When a user plans to use QBlade in an optimization problem or design task within WEIS,

the workflow follows the same logic as if a level 1 (RAFT) or level 2 or 3 (OpenFAST)

optimization with WEIS was to be run.

In particular, WEIS is accessed by a user through three *.yaml type files and one driver

python script that calls each of the yaml files and runs WEIS. In the following a short

overview is provided

windIO.yaml:

This file contains the parametric definition of a FOWT including information such as, airfoils,

blade geometry, internal blade layup, floater geometry, materials, wall thicknesses, etc.

There are several wind turbine geometries available to the research community:

• NREL5MW-Spar OC3 & -Semi OC4

• IEA 3.4-130 RWT

• IEA-15MW-250-RWT Monopile & VolturnUS-S

• IEA-22MW-280-RWT Monopile & VolturnUS-S

modeling_options.yaml:

The modeling options file lets the user define code specific simulation settings. Here, the

user may select between the different aero-servo-hydro-elastic modeling tools (OpenFAST,

RAFT, QBlade), and enter inputs relevant to, e.g. wake modeling, time step size, if a

controller is included, the load case, etc. This file allows for an exhaustive list of entries as

almost any QBlade parameter may be set. To keep the mapping intuitive, most entries are

set using the QBlade keywords that match the text-based format of QBlade turbine and

simulation (*.bld/*.sim/*.trb), see [18] for more information on the text-based QBlade

format.

A detailed overview of available inputs, detailed descriptions, entry-types and bounds can

be found in the modeling_schema.yaml (QBtoWEIS/weis/inputs/modeling_schema.yaml).

Here, all QBlade relevant inputs are found in in the “Level4” object and

“qblade_configuration” which is nested in the properties object.

analysis_options.yaml:

The analysis options file determines in which context simulations are run. Either, chosen

load cases are simply run for analysis purposes, an optimization problem is set up or a

design of experiments built. In case any of the latter two options is chosen, design

variables, constraints and, if required, a merit figure can be chosen. Furthermore, settings

concerning the optimization algorithm such as maximum iterations or convergence criteria

can be defined.

weis_driver.py:

Not necessarily required, this python script points to the three abovementioned files and

invokes the “run_weis()” method and passes the three files as arguments to the function.

4. Demonstration Test Cases

The test cases presented below are intended to demonstrate the functional coupling

between QBlade and WEIS and to show that the optimizer finds solutions to problems that

are easy to interpret and may seem trivial for validation purposes.

4.1. IEA15MW-Monopile

In this example, a fixed bottom offshore wind turbine is supposed to be optimized with the

objective to reduce the Damage Equivalent Loads acting on the tower base connection

between monopile and tower.

We simulate steady conditions at wind speeds of {4, 6, 8, 10, 12, 15, 20}[m/s]. The

simulations include the ROSCO controller. Thus, the optimization problem is formulated

as:

Since there are no constraints on structure mass nor cost, one would expect the optimizer

to increase the wall thicknesses and diameters of tower and monopile in order to minimize

stress in the system and thus reduce the tower base DEL.

Minimize:

twr base del

By Varying:

 tower diameter

 tower wall thickness

 monopile diameter

 monopile wall thickness

Subject to:

 stress constraint

 global buckling

 shell buckling

 diam. to thick. ratio

 taper

 frequency

 …

Figure 4 – IEA15MW turbine, rendered in

the QBlade GUI

Figure 5 shows the progression of the optimization. In all sub-figures except for DEL

TwrBsMyt, the various control points are displayed over the normalized length of the tower

or monopile. To visualize the progression of the optimization, a color-code is added, where

gray represents the baseline configuration and orange the final configuration.

As was expected, the tower diameter was increased within the bounds (upper bound 10m),

while still complying with a taper constraint. The monopile diameter is maintained at 10m

which presents an upper bound as well. For both the tower and the monopile, the wall

thicknesses are increased considerably, leading to a reduction of the stress constraint1.

The influence of the chosen design variables on the fore-aft tower base DEL is evident in

the iteration tracker of the chosen merit figure DEL TwrBsMyt.

4.2. IEA22MW UMaine VolturnUS-S

The second test case focuses on the IEA22MW wind turbine mounted on the semi-

submersible VolturnUS-S substructure with catenary mooring lines. This time, the objective is

the reduction of the structural mass of the substructure, a common optimization merit figure

to reduce material use and save cost.

1 The stress constraint is defined as the maximum allowable von Mises stress relative to

the material yield stress

Figure 5 - Optimization progression to reduce the tower base fore-aft DEL of on

the IEA15MW wind turbine on a monopile platform. Shown are the control

points accessible to the optimizer over the normed length of the tower or

monopile as well as the merit figure per iteration.

With 11.5m/s wind speed, rated wind conditions (two turbulent seeds) with still water are

considered and the ROSCO controller is utilized. The optimization problem is formulated

accordingly:

In order to reduce platform mass, it seems obvious that the optimizer would attempt to

reduce the dimensions of the platform.

Analyzing the iteration tracker of the optimization in Fig. 7 one can see that platform draft is

immediately reduced to the upper bound of -22m while the column spacing and diameter is

initially reduced as well. As one would expect, this measure reduces platform mass greatly.

Minimize:

platform mass

By Varying:

 platform draft

 column spacing

 column diameter

 pc natural frequency

 pc damping ratio

 ...

Subject to:

 pitch natural frequency

 heave natural frequency

 max. platform pitch

Figure 6– IEA22MM on UMaine

VolturnUS-S platform, rendered in

the QBlade GUI

Figure 7 – Optimization progression to reduce the platform mass of the UMaine

VolturnUS-S for a IEA22MW wind turbine. Shown are platform draft defined as

the distance from sea level, the column spacing as the radial distance from the

tower position to the outer columns as well as their column diameter. The

second row shows the pitch control natural frequency design variable, the

maximum floater pitching constraint and the merit figure, platform mass.

However, platform stability is strongly decreased as the maximum pitch angle during

operation reaches values well above the set constraint of 5 degrees. To comply with this

constraint, the optimizer gradually increases column spacing and diameter. Finally, the max

pitch constraint is reached with a considerable improvement in platform mass with regards to

the initial configuration. In parallel, the pitch control natural frequency and damping ratio (not

shown here for brevity) are tuned, demonstrating a functional CCD example with the

QBtoWEIS coupling.

5. Conclusion

In this deliverable, an overview of the work carried out in Task 7.1 within WP 7 of the

FLOATFARM project is given. Thereby, an integration of the aero-servo-hydro-elastic wind

turbine simulation tool QBlade into the design and optimization framework WEIS is

introduced.

The motivation for such a tool lies in the multi-disciplinary complex problem that is posed to

designers and engineers involved in the optimization and design process of FOWTs. WEIS

already provides a holistic toolset to carry out multi-disciplinary design analysis and

optimization tasks. This toolset is expanded by QBlade, adding various options and capabilities

to the framework that include wake modeling and structural dynamics.

Two test cases were presented for the optimizer where the optimization problems were

formulated in such a way that a certain result could be expected based on the given design

space, constraints and merit figure. QBtoWEIS performed as expected, reducing the DEL on a

fixed-bottom monopile offshore wind turbine and the structural mass of the floating

substructure on a semi-submersible platform.

6. Literature

[1] Garcia‐Sanz, M. (2019). Control Co‐Design: An engineering game changer. Advanced

Control for Applications, 1(1). https://doi.org/10.1002/adc2.18

[2] IEAWindTask. GitHub - IEAWindTask37/IEA-22-280-RWT: Repository for the IEA 22-

MW offshore reference wind turbine developed by the IEA Wind Task 55 REFWIND. GitHub.

https://github.com/IEAWindTask37/IEA-22-280-RWT

[3] Abbas, N. J., Jasa, J., Zalkind, D. S., Wright, A., & Pao, L. (2023). Control co-design of

a floating offshore wind turbine. Applied Energy, 353, 122036.

https://doi.org/10.1016/j.apenergy.2023.122036

[4] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor, “OpenMDAO:
An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization,”
Structural and Multidisciplinary Optimization, 2019.

[5] Daniel Zalkind and Pietro Bortolotti 2024 J.Phys.:Conf.Ser. 2767 082020

[6] IEAWindTask. GitHub - IEAWinDTask37/WiNdIO. GitHub.

https://github.com/IEAWindTask37/windIO

[7] ROSCO. GitHub - NREL/ROSCO: a reference open source controller for wind turbines.

GitHub. https://github.com/NREL/ROSCO

[8] YingyiLiu. GitHub - YingyiLiu/HAMS: An open-source computer program for the analysis

of wave diffraction and radiation of three-dimensional floating or submerged structures.

GitHub. https://github.com/YingyiLiu/HAMS

[9] OpenFAST. GitHub - OpenFAST/openfast: Main repository for the NREL-supported

OpenFAST whole-turbine and FAST.Farm wind farm simulation codes. GitHub.

https://github.com/OpenFAST/openfast

[10] RAFT. GitHub - WISDEM/RAFT: A frequency-domain dynamics model for floating wind

turbines. GitHub. https://github.com/WISDEM/RAFT

[11] pCrunch. GitHub - NREL/pCrunch. GitHub. https://github.com/NREL/pCrunch

[12] QBlade Documentation — QBlade Documentation 2.0.7 documentation.

https://docs.qblade.org/

https://github.com/IEAWindTask37/windIO
https://github.com/NREL/ROSCO
https://github.com/YingyiLiu/HAMS
https://github.com/WISDEM/RAFT
https://github.com/NREL/pCrunch
https://docs.qblade.org/

[13] Saverin, J., Perez-Becker, S., Behrens de Luna Robert, Marten, D., Gilloteaux, J., &

Kurnia, R. (2021). D1.2 Higher order Hydroelastic module. In Zenodo (CERN European

Organization for Nuclear Research). https://doi.org/10.5281/zenodo.6958081

[14] Perez-Becker, S., Saverin, J., Behrens de Luna, R., Papi, F., Combreau, C., Ducasse,

M.-L., Marten, D., and Bianchini, A.: Validation Report of QBlade-Ocean, Tech. rep.,

https://doi.org/10.5281/zenodo.7817605, 2022.

[15] Behrens de Luna, R., Perez-Becker, S., Saverin, J., Marten, D., Papi, F., Ducasse, M.,

Bonnefoy, F., Bianchini, A., & Paschereit, C. (2024). Quantifying the impact of modeling

fidelity on different substructure concepts for floating offshore wind turbines – Part 1:

Validation of the hydrodynamic module QBlade-Ocean. Wind Energy Science, 9(3), 623–
649. https://doi.org/10.5194/wes-9-623-2024

[16] Papi, F., Troise, G., Behrens de Luna, R., Saverin, J., Perez-Becker, S., Marten, D.,

Ducasse, M., & Bianchini, A. (2024). Quantifying the impact of modeling fidelity on different

substructure concepts – Part 2: Code-to-code comparison in realistic environmental

conditions. Wind Energy Science, 9(4), 981–1004. https://doi.org/10.5194/wes-9-981-

2024

[17] Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor,

M., Sugiyama, H., and Negrut, D.: Chrono: An Open Source Multi-physics Dynamics

Engine, in: Lecture Notes in Computer Science, pp. 19–49, Springer International

Publishing, https://doi.org/10.1007/978-3-319-40361-8_2, 2016.

[18] Turbine Definition ASCII File — QBlade Documentation 2.0.7 documentation.

https://docs.qblade.org/src/user/turbine/turbineexport.html

https://doi.org/10.5194/wes-9-623-2024
https://docs.qblade.org/src/user/turbine/turbineexport.html

